18 research outputs found

    Layout decomposition for triple patterning lithography

    Get PDF
    Nowadays the semiconductor industry is continuing to advance the limits of physics as the feature size of the chip keeps shrinking. Products of the 22 nm technology node are already available on the market, and there are many ongoing research studies for the 14/10 nm technology nodes and beyond. Due to the physical limitations, the traditional 193 nm immersion lithography is facing huge challenges in fabricating such tiny features. Several types of next-generation lithography techniques have been discussed for years, such as {\em extreme ultra-violet} (EUV) lithography, {\em E-beam direct write}, and {\em block copolymer directed self-assembly} (DSA). However, the source power for EUV is still an unresolved issue. The low throughput of E-beam makes it impractical for massive productions. DSA is still under calibration in research labs and is not ready for massive industrial deployment. Traditionally features are fabricated under single litho exposure. As feature size becomes smaller and smaller, single exposure is no longer adequate in satisfying the quality requirements. {\em Double patterning lithography} (DPL) utilizes two litho exposures to manufacture features on the same layer. Features are assigned to two masks, with each mask going through a separate litho exposure. With one more mask, the effective pitch is doubled, thus greatly enhancing the printing resolution. Therefore, DPL has been widely recognized as a feasible lithography solution in the sub-22 nm technology node. However, as the technology continues to scale down to 14/10 nm and beyond, DPL begins to show its limitations as it introduces a high number of stitches, which increases the manufacturing cost and potentially leads to functional errors of the circuits. {\em Triple pattering lithography} (TPL) uses three masks to print the features on the same layer, which further enhances the printing resolution. It is a natural extension for DPL with three masks available, and it is one of the most promising solutions for the 14/10 nm technology node and beyond. In this thesis, TPL decomposition for standard-cell-based designs is extensively studied. We proposed a polynomial time triple patterning decomposition algorithm which guarantees finding a TPL decomposition if one exists. For complex designs with stitch candidates, our algorithm is able to find a solution with the optimal number of stitches. For standard-cell-based designs, there are additional coloring constraints where the same type of cell should be fabricated following the same pattern. We proposed an algorithm that is guaranteed to find a solution when one exists. The framework of the algorithm is also extended to pattern-based TPL decompositions, where the cost of a decomposition can be minimized given a library of different patterns. The polynomial time TPL algorithm is further optimized in terms of runtime and memory while keeping the solution quality unaffected. We also studied the TPL aware detailed placement problem, where our approach is guaranteed to find a legal detailed placement satisfying TPL coloring constraints as well as minimizing the {\em half-perimeter wire length} (HPWL). Finally, we studied the problem of performance variations due to mask misalignment in {\em multiple patterning decompositions} (MPL). For advanced technology nodes, process variations (mainly mask misalignment) have significant influences on the quality of fabricated circuits, and often lead to unexpected power/timing degenerations. Mask misalignment would complicate the way of simulating timing closure if engineers do not understand the underlying effects of mask misalignment, which only exists in multiple patterning decompositions. We mathematically proved the worst-case scenarios of coupling capacitance incurred by mask misalignment in MPL decompositions. A graph model is proposed which is guaranteed to compute the tight upper bound on the worst-case coupling capacitance of any MPL decompositions for a given layout

    Association of modifiable lifestyle with colorectal cancer incidence and mortality according to metabolic status: prospective cohort study

    Get PDF
    BackgroundMetabolic syndrome has been linked to an increased risk of colorectal cancer (CRC) incidence and mortality, but whether adopting a healthy lifestyle could attenuate the risk of CRC conferred by metabolic syndrome remains unclear. The aim of the study is to investigate the individual and joint effects of modifiable healthy lifestyle and metabolic health status on CRC incidence and mortality in the UK population.MethodsThis prospective study included 328,236 individuals from the UK Biobank. An overall metabolic health status was assessed at baseline and categorized based on the presence or absence of metabolic syndrome. We estimated the association of the healthy lifestyle score (derived from 4 modifiable behaviors: smoking, alcohol consumption, diet, physical activity and categorized into “favorable,” “intermediate”, and “unfavorable”) with CRC incidence and mortality, stratified by metabolic health status.ResultsDuring a median follow-up of 12.5 years, 3,852 CRC incidences and 1,076 deaths from CRC were newly identified. The risk of incident CRC and its mortality increased with the number of abnormal metabolic factors and decreased with healthy lifestyle score (P trend = 0.000). MetS was associated with greater CRC incidence (HR = 1.24, 95% CI: 1.16 – 1.33) and mortality (HR = 1.24, 95% CI: 1.08 – 1.41) when compared with those without MetS. An unfavorable lifestyle was associated with an increased risk (HR = 1.25, 95% CI: 1.15 – 1.36) and mortality (HR = 1.36, 95% CI: 1.16 – 1.59) of CRC across all metabolic health status. Participants adopting an unfavorable lifestyle with MetS had a higher risk (HR = 1.56, 95% CI: 1.38 – 1.76) and mortality (HR = 1.75, 95% CI: 1.40 – 2.20) than those adopting a favorable healthy lifestyle without MetS.ConclusionThis study indicated that adherence to a healthy lifestyle could substantially reduce the burden of CRC regardless of the metabolic status. Behavioral lifestyle changes should be encouraged for CRC prevention even in participants with MetS

    Molecular Imaging in Traditional Chinese Medicine Therapy for Neurological Diseases

    Get PDF
    With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer’s disease, Parkinson’s disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM

    Geochemical characteristics and ecological effects of Se and Zn in topsoil in Western Fuling of Chongqing

    No full text
    A large area of soil in China is deficient in selenium (Se) and zinc (Zn),meanwhile, Se and Zn are essential trace elements for human body, so it is of great significance to find Se and Zn rich soil to cultivate crops. Based on the data of Se and Zn in topsoil, crops and root soil obtained from 1:50000 land quality geochemical survey, this paper taking the western area of Fuling in Chongqing as the research area, studies the content and spatial distribution characteristics of Se and Zn in soil and crops, and analyzes the enrichment law of Se and Zn in agricultural crops. The results show that the average values of Se and Zn in the topsoil of the study area are 0.265mg/kg and 77.56mg/kg respectively. There are some differences in the contents of Se and Zn in different geological backgrounds, soil parent materials and soil types. The high value areas of Se and Zn are mainly distributed in the exposed areas of Triassic carbonate; in the study area, the average contents of Se and Zn in maize seeds are 0.029mg/kg and 20.752mg/kg respectively, and the enrichment rates are 96% and 82% respectively. The average contents of Se and Zn in rice seeds are 0.032mg/kg and 11.463mg/kg respectively, and the enrichment rates are 13.3% and 5% respectively. The bioaccumulation coefficients of Se and Zn in maize are higher than that in rice, and the availability of Se and Zn elements in maize root soil is higher.The results can provide geochemical basis for developing characteristic land resources, functional agriculture and promoting rural revitalization in Fuling District
    corecore